If $$2 + 2x < 3 + 5x$$ and $$3(x - 2)2 < 5 - x$$; then x can take which of the following values?
Expression 1 : $$2 + 2x < 3 + 5x$$
=> $$5x - 2x$$Â > $$2 - 3$$
=> $$x$$Â > $$\frac{-1}{3}$$ ----------(i)
Expression 2Â :Â $$3(x - 2)2 < 5 - x$$
=> $$6x - 12$$ < $$5 - x$$
=> $$6x + x$$ < $$5 + 12$$
=> $$x$$ < $$\frac{17}{7}$$ ------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{-1}{3}$$ < $$x$$ < $$\frac{17}{7}$$
Thus, $$x$$ can take values = 0 , 1 , 2
=> Ans - (A)
Create a FREE account and get: