Question 79

In $$\triangle ABC, D$$ and $$E$$ are the points on $$AB$$ and $$AC$$ respectively such that $$AD \times AC = AB \times AE.$$ If $$\angle ADE = \angle ACB + 30^\circ$$ and $$\angle ABC = 78^\circ$$, then $$\angle A = ?$$

Solution

$$AD \times AC = AB \times AE$$

$$ \frac{AD}{AE} = \frac{AB}{AC}$$

$$\triangle ABC\text{ is similar to} \triangle$$ ADE so,

$$\angle ADE = \angle ABC$$ 

$$\angle ADE = 78\degree$$

$$\angle AED = \angle ACB$$

$$\angle ADE = \angle ACB + 30^\circ$$


$$\angle ACB = 78 -30 = 48 $$

In $$\triangle$$ ABC - 

$$\angle$$ ABC + $$\angle$$ ACB + $$\angle$$ A = 180$$\degree$$

$$\angle A = 180 - 78 - 48 = 54\degree$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App