A solid cylinder of base radius 12 cm and height 15 cm is melted and recast into m toys each in the shape of a right circular cone of height 9 cm mounted on a hemisphere of radius 3 cm. The value of n is:
Volume of cylinder = $$\pi \times r^2 \times h =Â \pi \times 12^2 \times 15 = 2160 \pi$$
Volume of n right circular cone = $$ \frac{1}{3}\pi \times r^2 \times h \times m =  \frac{1}{3}\pi \times 3^2 \times 9 \times n$$
Volume of hemisphere = $$ \frac{2}{3} \pi r^3 \times m =Â Â \frac{2}{3} \pi \times 3^3 \times n$$
volume of cylinder =Â Volume of n right circular cone +Â Volume of n hemisphere
$$2160 \pi =Â Â \frac{1}{3}\pi \times 3^2 \times 9 \times n +Â \frac{2}{3} \pi 3^3 \times n$$
2160 =Â 27n + 18n
n = 2160/45 = 48
Create a FREE account and get: