If x + 3 ≤ 4x + 4 and 3(4 - x) - 4 ≥ 2x - 2, then x can take which of the following values?
Expression 1 : x + 3 ≤ 4x + 4
=> $$4x-x \geq 3-4$$
=> $$3x \geq -1$$
=> $$x \geq \frac{-1}{3}$$ ---------(i)
Expression 2 : 3(4 - x) - 4 ≥ 2x - 2
=> $$12-3x-4 \geq 2x-2$$
=> $$2x+3x \leq 8+2$$
=> $$5x \leq 10$$
=> $$x \leq 2$$ --------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{-1}{3} \leq x \leq 2$$
The only value that $$x$$ can take among the options = 1
=> Ans - (A)
Create a FREE account and get: