If x + y + z = 19, xy + yz + zx = 114, then the value of $$\sqrt{x^3 + y^3 + z^3 - 3xyz}$$ is:
Given that,
x + y + z = 19, xy + yz + zx = 114
We know that $$(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)$$
Hence, $$(x+y+z)^2-2(xy+yz+zx)=x^2+y^2+z^2$$
Now, substituting the values, $$(19)^2-2(114)=x^2+y^2+z^2$$
$$\Rightarrow 361-228=x^2+y^2+z^2$$
$$\Rightarrow x^2+y^2+z^2=133$$
Now, $$\Rightarrow \sqrt{x^3 + y^3 + z^3 - 3xyz}=\sqrt{(x+y+z)(x^2+y^2+z^2-xy-yz-zx)}$$
Now, substituting the values in the equation,
$$\Rightarrow \sqrt{x^3 + y^3 + z^3 - 3xyz}=\sqrt{(19)(133-114)}=\sqrt{19\times 14}=19$$
Create a FREE account and get: