Let O be the centre of a circle and AC be its diameter. BD is a chord intersecting AC at E. Point A is joined to B and D. If $$\angle$$BOC = $$50^\circ$$ and $$\angle$$AOD = $$110^\circ$$, then $$\angle$$BEC = ?
$$\angle AOD=110$$
$$\angle ABD=\frac{1}{2}\angle AOD=55$$
AC is Diameter
$$\angle ABC=90$$ Â (angle on semicircle)
$$\angle CBE=90-55=35$$
In triangle BOC
OB=OC = Radius
$$\angle OBC=\angle OCB$$
$$\angle OBC+\angle OCB+\angle BOC = 180$$
$$2\angle OCB+50=180$$
$$\angle OCB=65$$
In triangle BEC
$$\angle CBE+\angle BEC+\angle ECB=180$$
$$\angle BEC+65+35=180$$
$$\angle BEC=80$$
Create a FREE account and get: