Given, $$x=2+\sqrt{3}$$
$$=$$> $$\ \frac{1}{x}=\ \frac{1}{2+\sqrt{3}}$$
$$=$$> $$\ \frac{1}{x}=\ \frac{1}{2+\sqrt{3}}\times\ \frac{2-\sqrt{3}}{2-\sqrt{3}}$$
$$=$$> $$\ \frac{1}{x}=\ \frac{2-\sqrt{3}}{4-3}$$
$$=$$> $$\ \frac{1}{x}=\ 2-\sqrt{3}$$
$$\therefore\ x-\frac{1}{x}=(2+\sqrt{3})-(2-\sqrt{3})=2\sqrt{3}$$
$$=$$> $$\left(\ x-\frac{1}{x}\right)^3=\left(2\sqrt{3}\right)^3$$
$$=$$> $$x^3-\frac{\ 1}{x^3}-3.x.\frac{1}{x}\left(\ x-\frac{1}{x}\right)=8\left(3\sqrt{3}\right)$$
$$=$$> $$x^3-\frac{\ 1}{x^3}-3\left(2\sqrt{3}\right)=24\sqrt{3}$$
$$=$$> $$x^3-x^{-3}=30\sqrt{3}$$
Hence, the correct answer is Option C
Create a FREE account and get: