The surface areas of two spheres are in the ratio of 64 : 81. Find the ratio of their volumes, in the order given.
Let's assume the radius of two spheres is $$R_1$$ and $$R_2$$.
The surface areas of two spheres are in the ratio of 64 : 81.
$$\frac{Surface\ area\ of\ the\ first\ sphere}{Surface\ area\ of\ the\ second\ sphere}\ =\ \frac{64}{81}$$
$$\frac{4\times\ \pi\ \times\ \left(R_1\right)^2}{4\times\ \pi\ \times\ \left(R_2\right)^2}\ =\ \frac{64}{81}$$
$$\frac{\ \left(R_1\right)^2}{\ \left(R_2\right)^2}\ =\ \frac{64}{81}$$
$$\left(\frac{\ R_1}{\ R_2}\right)^2\ =\ \left(\frac{8}{9}\right)^2$$Create a FREE account and get: