Question 72

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of $$a^3 + b^3$$ is:

Solution

Given,  $$a+b=20$$  and  $$ab=4$$

$$=$$>  $$\left(a+b\right)^3=20^3$$

$$=$$>  $$a^3+b^3+3ab\left(a+b\right)=8000$$

$$=$$>  $$a^3+b^3+3\left(4\right)\left(20\right)=8000$$

$$=$$>  $$a^3+b^3+240=8000$$

$$=$$>  $$a^3+b^3=8000-240$$

$$=$$>  $$a^3+b^3=7760$$

Hence, the correct answer is Option A


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App