Question 72

If $$2x=\sin\theta$$ and $$\frac{2}{x}=\cos\theta$$, then the value of $$4\left(x^2+\frac{1}{x^2}\right)$$ is:

Solution

Given, $$2x=\sin\theta$$ and $$\frac{2}{x}=\cos\theta$$

From the trigonometric identities,

$$\sin^2\theta\ +\cos^2\theta\ =1$$

$$\Rightarrow$$ $$\left(2x\right)^2+\left(\frac{2}{x}\right)^2=1$$

$$\Rightarrow$$  $$4x^2+\frac{4}{x^2}=1$$

$$\Rightarrow$$  $$4\left(x^2+\frac{1}{x^2}\right)=1$$

Hence, the correct answer is Option A


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App