In the given figure, AP and BP are tangents to a circle with centre O. If $$\angle$$APB = 62$$^\circ$$ then the measure of $$\angle$$AQB is:
Given, $$\angle$$APB = 62$$^\circ$$
AP and BP are tangents to the circle with centre O
$$\Rightarrow$$  $$\angle$$OAP = 90$$^\circ$$ and $$\angle$$OBP = 90$$^\circ$$
In quadrilateral OAPB,
$$\angle$$AOB + $$\angle$$OBP + $$\angle$$APB + $$\angle$$OAP = 360$$^\circ$$
$$\Rightarrow$$ Â $$\angle$$AOB +Â 90$$^\circ$$ +Â 62$$^\circ$$ +Â 90$$^\circ$$ =Â 360$$^\circ$$
$$\Rightarrow$$ Â $$\angle$$AOB + 242$$^\circ$$ = 360$$^\circ$$
$$\Rightarrow$$ Â $$\angle$$AOB = 118$$^\circ$$
Angle subtended by major arc at the centre is double the angle subtended by the major at any point on the circle.
$$\Rightarrow$$ Â $$\angle$$AOB =Â 2$$\angle$$AQB
$$\Rightarrow$$ Â 118$$^\circ$$ =Â 2$$\angle$$AQB
$$\Rightarrow$$ Â $$\angle$$AQB =Â 59$$^\circ$$
Hence, the correct answer is Option D
Create a FREE account and get: