In a circle, PQ and RS are two diameters that are perpendicular to each other. Find the length of the chord PR.
Let the radius of the circle = r
PQ and RS are two diameters that are perpendicular to each other
$$=$$>Â PQ = RS = 2r
$$=$$>Â r = $$\frac{\text{PQ}}{2}$$
In $$\triangle\ $$OPR,
$$\text{PR}^2=\text{OR}^2+\text{OP}^2$$
$$=$$> Â Â $$\text{PR}^2=r^2+r^2$$
$$=$$> Â Â $$\text{PR}^2=2r^2$$
$$=$$> Â Â $$\text{PR}=\sqrt{2}r$$
$$=$$> Â Â $$\text{PR}=\sqrt{2}\times\frac{PQ}{2}$$
$$=$$> Â $$\text{PR}=\frac{PQ}{\sqrt{2}}$$
Hence, the correct answer is Option D
Create a FREE account and get: