If $$\sec \theta - \tan \theta = \frac{x}{y}, (0 < x < y)$$ and $$0^\circ < \theta < 90^\circ$$, then $$\sin \theta$$ is equal to:
$$\sec \theta - \tan \theta = \frac{x}{y}$$ ---(1)
$$\frac{1}{\sec \theta - \tan \theta} = \frac{y}{x}$$
$$\frac{\sec^2 \theta - \tan^2 \theta}{\sec \theta - \tan \theta} = \frac{y}{x}$$
$$\frac{(\sec \theta - \tan \theta)(\sec \theta + \tan \theta)}{\sec \theta - \tan \theta} = \frac{y}{x}$$
$$\sec \theta + \tan \theta =Â \frac{y}{x}$$ ---(2)
From eq(1) and (2),
$$\sec \theta - \tan \theta +Â \sec \theta + \tan \theta =Â \frac{x}{y} +Â \frac{y}{x}$$
$$2\sec \theta = \frac{x^2 + y^2}{xy} $$
$$\sec \theta = \frac{x^2 + y^2}{2xy} $$
$$\cos \theta = \frac{2xy}{x^2 + y^2} $$
Base = 2xy
Hypotenuses =Â {x^2 + y^2}
By Pythagoras,
$$(p)^2 + (2xy)^2 =Â (x^2 + y^2)^2$$
$$(p)^2 =Â x^4 + y^4 + 2x^2y^2 -Â 4x^2y^2
$$p =Â x^2 - y^2 = y^2 - x^2
sin$$\theta = p/h = \frac{y^2 - x^2}{x^2 + y^2}$$
Create a FREE account and get: