The value of $$\frac{\tan^2 \theta - \sin^2 \theta}{2 + \tan^2 \theta + \cot^2 \theta}$$ is:
$$\frac{\tan^2 \theta - \sin^2 \theta}{2 + \tan^2 \theta + \cot^2 \theta}$$
= $$\frac{\tan^2 \theta - \sin^2 \theta}{1 + \tan^2 \theta + 1 +Â \cot^2 \theta}$$
= $$\frac{\tan^2 \theta - \sin^2 \theta}{\sec^2 \theta + \cosec^2 \theta}$$
= $$\frac{\tan^2 \theta - \sin^2 \theta}{\frac{1}{\cos^2 \theta} +\frac{1}{\sin^2 \theta}}$$
= $$\frac{(\tan^2 \theta - \sin^2 \theta)(\sin^2\theta\cos^2 \theta)}{\cos^2 \theta + \sin^2 \theta}$$
= $$(\tan^2 \theta - \sin^2 \theta)(\sin^2\theta\cos^2 \theta)$$
= $$ \sin^4 \theta -Â \sin^4 \theta\cos^2 \theta$$
= $$ \sin^4 \theta(1 - \cos^2 \theta)$$ = $$ \sin^4 \theta \sin^2 \theta =Â \sin^6 \theta$$
Create a FREE account and get: