In $$\triangle$$ABC, AD $$\perp$$ BC and BE $$\perp$$ AC. AD and BE intersect each other at F . If BF = AC, then the measure of $$\angle$$ABC is:
From the given question,
In $$\triangle BDF$$ and $$\triangle AEF$$
$$\angle BDF=\angle AEF=90$$
$$\angle BFD=\angle AFE$$Â (opposite angle)
So, $$\angle DBF=\angle FAD$$
Hence $$\triangle BDF$$ and $$\triangle AEF$$ are similar triangle.
So, $$\triangle BDF$$ and $$\triangle ADC$$ are similar triangle
Hence, $$\dfrac{BF}{AC}=\dfrac{BD}{AD}$$
Hence, BD=AD
$$\tan \angle B=\dfrac{AD}{BD}=\tan 45^\circ$$
$$\angle ABX=45^\circ$$
Create a FREE account and get: