A triangle ABC is inscribed in a circle with centre O. AO is produced to meet the circle at K and AD $$\perp$$ BC. If $$\angle$$B = 80$$^\circ$$ and $$\angle$$C = 64$$^\circ$$, then the measure of $$\angle$$DAK is:
As per the given question,
Given that, AD $$\perp$$ BC, $$\angle$$B = 80$$^\circ$$ and $$\angle$$C = 64$$^\circ$$
Now, $$\triangle ADB$$
$$\angle ABD=80$$
$$\angle BAD=90-80=10^\circ$$
In $$\triangle ABC$$ $$\angle BAC=180-80-64=36^\circ$$
Now, In $$\triangle ACK$$ and $$\triangle ACB$$
$$\angle B=\angle K$$ base is same for both triangle in a circle.
Now, in the $$\triangle ACK$$
$$\angle C=90^\circ$$
Hence $$\angle CAK=90-80=10^\circ$$
Now, $$\angle DAK=\angle BAC-\angle BAD-\angle CAK$$
$$\angle DAK=36-10-10=16^\circ$$
Create a FREE account and get: