In how may years will a sum of $$₹ 320$$ amount to $$₹ 405$$ if interest is compounded at 12.5% per annum?
Given,
Principal (P) = $$₹ 320$$
Rate (R)% = 12.5%
Amount (A) = $$₹ 405$$
Let the required number of years = n
$$=$$> $$\text{P}\left(1+\frac{\text{R}}{100}\right)^n=405$$
$$=$$> $$320\left(1+\frac{12.5}{100}\right)^n=405$$
$$=$$> $$320\left(\frac{112.5}{100}\right)^n=405$$
$$=$$> $$\left(\frac{1125}{1000}\right)^n=\frac{405}{320}$$
$$=$$> $$\left(\frac{9}{8}\right)^n=\frac{81}{64}$$
$$=$$> $$\left(\frac{9}{8}\right)^n=\frac{9^2}{8^2}$$
$$=$$> $$\left(\frac{9}{8}\right)^n=\left(\frac{9}{8}\right)^2$$
$$=$$> $$n=2$$
Hence, the correct answer is Option A
Create a FREE account and get: