In the given figure, PQRS is a cyclic quadrilateral. What is the measure of the angle PQR if PQ is parallel to SR?
In the cyclic quadrilateral PQRS,
Sum of opposite angles = 180$$^{\circ\ }$$
$$=$$> Â $$\angle$$SPQ +Â $$\angle$$SRQ =Â 180$$^{\circ\ }$$
$$=$$> Â 110$$^{\circ\ }$$Â + $$\angle$$SRQ = 180$$^{\circ\ }$$
$$=$$> Â $$\angle$$SRQ =Â 70$$^{\circ\ }$$
Given, PQ is parallel to SR
RQ is the transversal intersecting the parallel lines PQ and SR
Sum of the interior angles on the same side of the transversal is 180$$^{\circ\ }$$
$$=$$> Â $$\angle$$SRQ +Â $$\angle$$PQR =Â 180$$^{\circ\ }$$
$$=$$> Â 70$$^{\circ\ }$$ + $$\angle$$PQR = 180$$^{\circ\ }$$
$$=$$> Â $$\angle$$PQR =Â 110$$^{\circ\ }$$
Hence, the correct answer is Option A
Create a FREE account and get: