$$a^{4}+b^{4}-a^{3}-b^{3}-2a^{2}b^{2}+ab$$
=Â $$a^{4}-2a^{2}b^{2}+b^{4}-a^{3}-b^{3}+ab$$
=($$a^{2}-b^{2})^2$$-$$((a+b)^3-3ab(a+b))$$+ab
=$$((a+b)(a-b))^2$$-$$[(1)^3-3ab(1)]$$+ab
=$$((1)(a-b))^2$$-(1-3ab)+ab
=$$(a-b)^2$$-1+3ab+ab
=$$(a-b)^2$$+4ab-1
=$$(a+b)^2$$-1
=$$(1)^2$$-1
=0
Therefore, Option D is the right choice.
Create a FREE account and get: