Question 70

If a + b = 5 and ab = 3, then $$(a^3 + b^3)$$ is equal to:

Solution

Given that,

$$a+b=5$$ and $$ab=3$$
Now, $$a+b=5$$
squaring both side,
$$\Rightarrow(a+b)^2=25$$
$$\Rightarrow(a+b)^2=a^2+b^2+2ab$$
$$\Rightarrow(a+b)^2=a^2+b^2+2ab$$
$$\Rightarrowa^2+b^2=25-2ab=$$
$$\Rightarrowa^2+b^2=25-2\times3=19$$
$$\Rightarrow(a^3 + b^3)=(a+b)(a^2+b^2-ab)$$
$$\Rightarrow(a^3 + b^3)=(5)(19-3)$$
$$\Rightarrow(a^3 + b^3)=80$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App