Expression : $$sec^217^\circ-\frac{1}{tan^273^\circ}-sin17^\circ sec73^\circ$$
Using, $$sec(90^\circ-\theta)=cosec \theta$$ and $$cot(90^\circ-\theta)=tan \theta)$$
= $$[sec^217^\circ-cot^273^\circ]-[sin17^\circ \times sec(90^\circ-17^\circ)]$$
= $$[sec^217^\circ-tan^2(90^\circ-17^\circ)]-[sin17^\circ \times cosec17^\circ]$$
Using, $$sin\theta cosec\theta=1$$ and $$(sec^2\theta-tan^2\theta=1)$$
= $$(sec^217^\circ-tan^217^\circ)-1$$
= $$1-1=0$$
=> Ans - (B)
Create a FREE account and get: