Given : AB = AC and thus $$\angle$$ B = $$\angle$$ C and XY is parallel to BC
To find : $$\angle$$ BXY = $$\theta$$ = ?
Solution : In $$\triangle$$ ABC, sum of all angles = 180°
=> $$\angle$$ A + $$\angle$$ B + $$\angle$$ C = 180°
=> 30° + 2$$\angle$$ B = 180°
=> 2$$\angle$$ B = 180° - 30° = 150°
=> $$\angle$$ B = $$\frac{150}{2}=75^\circ$$
Now, $$\because$$ XY is parallel to BC, thus BX is transversal
=> $$\angle$$ B + $$\angle$$ BXY = 180° [Angles on the same side of transversal]
=> $$75^\circ + \theta=180^\circ$$
=> $$\theta=180^\circ-75^\circ=105^\circ$$
=> Ans - (D)
Create a FREE account and get: