If $$\pi sin\theta=1,\pi cos\theta=1$$ then $$\sqrt{3}tan(\frac{2}{3}\theta)+1$$ the value isÂ
Given : $$\pi sin\theta=1,\pi cos\theta=1$$
=> $$sin\theta=cos\theta$$
=> $$sin\theta=sin(90^\circ-\theta)$$
=> $$\theta=90^\circ-\theta$$
=> $$\theta+\theta=2\theta=90^\circ$$
=> $$\theta=\frac{90}{2}=45^\circ$$
To find : $$\sqrt{3}tan(\frac{2}{3}\theta)+1$$
=Â $$\sqrt{3}tan(\frac{2}{3} \times 45^\circ)+1$$
=Â $$\sqrt{3}tan(30^\circ)+1$$
= $$(\sqrt3 \times \frac{1}{\sqrt{3}})+1$$
= $$1+1=2$$
=> Ans - (C)
Create a FREE account and get: