If $$\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$$ then the value of $$\sin^4\theta-\cos^4\theta$$ isÂ
Given : $$\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$$
=> $$sin\theta+cos\theta=3sin\theta-3cos\theta$$
=> $$3sin\theta-sin\theta=3cos\theta+cos\theta$$
=> $$2sin\theta=4cos\theta$$
=> $$\frac{sin\theta}{cos\theta}=\frac{4}{2}$$
=> $$tan\theta=2$$
Using, $$sec^2\theta-tan^2\theta=1$$
=> $$sec^2\theta=1+(2)^2=5$$
$$\therefore$$ $$cos^2\theta=\frac{1}{5}$$
Similarly, $$sin^2\theta=\frac{4}{5}$$
To find : $$\sin^4\theta-\cos^4\theta$$
= $$(sin^2\theta-cos^2\theta)(sin^2\theta+cos^2\theta) = (sin^2\theta-cos^2\theta)$$ Â Â [$$\because sin^2\theta+cos^2\theta=1$$]
= $$\frac{4}{5}-\frac{1}{5}=\frac{3}{5}$$
=> Ans - (D)
Create a FREE account and get: