Question 69

If a + b + c = 13 and ab + bc + ca = 54, then $$a^3 + b^3 + c^3 - 3abc$$ is equal to:

Solution

$$\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)$$

$$13^2=a^2+b^2+c^2+2\times54$$

$$169=a^2+b^2+c^2+108$$

$$a^2+b^2+c^2=169-108=61$$

$$a^3 + b^3 + c^3 - 3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)$$

                                  =$$\left(a+b+c\right)\left\{\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\right\}$$

                                 =$$13\times\ \left(61-54\right)=13\times\ 7=91$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App