If a + b + c = 13 and ab + bc + ca = 54, then $$a^3 + b^3 + c^3 - 3abc$$ is equal to:
$$\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)$$
$$13^2=a^2+b^2+c^2+2\times54$$
$$169=a^2+b^2+c^2+108$$
$$a^2+b^2+c^2=169-108=61$$
$$a^3 + b^3 + c^3 - 3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)$$
                 =$$\left(a+b+c\right)\left\{\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\right\}$$
                 =$$13\times\ \left(61-54\right)=13\times\ 7=91$$
Create a FREE account and get: