Question 68

In quadrilateral $$ABCD, \angle C = 72^\circ$$ and $$\angle D = 28^\circ$$. The bisectors of $$\angle A$$ and $$\angle B$$ meet in O. What is the measure of $$\angle AOB$$?

Solution

In quadrilateral $$ABCD$$,
$$\angle A + \angle B + \angle C + \angle D$$ = 360
$$\angle A + \angle B = 360 - 72 - 28 = 260\degree$$
$$\frac{1}{2}(\angle A + \angle B) = 130\degree$$
In $$\triangle$$ AOB,
$$\frac{1}{2}(\angle A + \angle B) + \angle AOB = 180$$
$$\angle AOB = 180 - 130 = 50\degree$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App