Question 67

One of the factor of the expression $$X^{2}-Y^{2}-Z^{2}+2YZ+X+Y-Z$$ is

Solution

Expression : $$X^{2}-Y^{2}-Z^{2}+2YZ+X+Y-Z$$

= $$x^2-(y^2+z^2-2yz)+(x+y-z)$$

= $$x^2-(y-z)^2+(x+y-z)$$

= $$[x^2-(y-z)^2]+(x+y-z)$$

Using, $$a^2-b^2=(a-b)(a+b)$$

= $$(x-y+z)(x+y-z)+(x+y-z)$$

= $$(x+y-z)(x-y+z+1)$$

=> Ans - (A)


cracku

Boost your Prep!

Download App