Question 67

Let x be the median of data: 33, 42, 28, 49, 32, 37, 52, 57, 35, 41.
If 32 is replaced by 36 and 41 by 63, then the median of the data, so obtained, is y. What is the value of (x + y)?

Solution

33, 42, 28, 49, 32, 37, 52, 57, 35, 41

Arrange the given data in ascending order from left to right.

28, 32, 33, 35, 37, 41, 42, 49, 52, 57

Median = $$\frac{\left(\frac{n}{2}\right)^{th}\ term\ +\left(\frac{n}{2}+1\right)^{th}\ term}{2}$$

Here n = the number of data

Median = x = $$\frac{\left(\frac{10}{2}\right)^{th}\ term\ +\left(\frac{10}{2}+1\right)^{th}\ term}{2}$$

= $$\frac{5^{th}\ term\ +\left(5+1\right)^{th}\ term}{2}$$

= $$\frac{5^{th}\ term\ +6^{th}\ term}{2}$$

= $$\frac{37+41}{2}$$

= $$\frac{78}{2}$$

x = 39

If 32 is replaced by 36 and 41 by 63, then the median of the data, so obtained, is y.

28, 36, 33, 35, 37, 63, 42, 49, 52, 57

Arrange the given data in ascending order from left to right.

28, 33, 35, 36, 37, 42, 49, 52, 57, 63

Median = y = $$\frac{\left(\frac{10}{2}\right)^{th}\ term\ +\left(\frac{10}{2}+1\right)^{th}\ term}{2}$$

= $$\frac{5^{th}\ term\ +\left(5+1\right)^{th}\ term}{2}$$

= $$\frac{5^{th}\ term\ +6^{th}\ term}{2}$$

= $$\frac{37 + 42}{2}$$

= $$\frac{79}{2}$$

y = 39.5

value of (x + y) = (39+39.5)

= 78.5


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App