The radius of a solid right circular cylinder is $$66\frac{2}{3}\%$$ of its height. If the height is 'h' centimeters then its total surface area(in $$cm^2$$)is:
If the height of a solid right circular cylinder is 'h' cm.
Let's assume the radius of a solid right circular cylinder is 'r' cm.
The radius of a solid right circular cylinder is $$66\frac{2}{3}\%$$ of its height.
r = $$66\frac{2}{3}\%$$ of h
$$r=\frac{2h}{3}$$Â Â Eq.(i)
Total surface area =Â $$2\pi\ r\left(r+h\right)$$
Put Eq.(i) in the above formula.
= $$2 \pi \times \frac{2h}{3}(\frac{2h}{3}+h)$$
= $$2\pi\times\frac{2h}{3}\times\ \frac{5h}{3}$$
= $$\frac{20}{9}\pi h^2$$
Create a FREE account and get: