In $$\triangle ABC, \angle C = 90^\circ, AC = 5 cm$$ and $$BC = 12 cm$$. The bisector of $$\angle A$$ meets BC at D. What is the length of AD?
By the Pythagoras theorem,
$$(AB)^2 = (AC)^2 + (BC)^2$$
$$(AB)^2 = (5)^2 + (12)^2$$
$$(AB)^2 = (5)^2 + (12)^2$$
$$(AB)^2 = 25 +Â 144$$
AB = 13 cm
By angle bisector theorem,
$$\frac{AB}{BD} = \frac{AC}{CD}$$
Let CD be x cm.
$$\frac{13}{12 - x} = \frac{5}{x}$$
13x = 60 - 5x
x = 60/18 = 10/3
In $$\triangle ACD$$,
$$(AD)^2 = (AC)^2 + (CD)^2$$
$$(AD)^2 = (5)^2 + (\frac{10}{3})^2$$
$$(AD)^2 = 25 + \frac{100}{9}$$
$$(AD)^2 = \frac{325}{9}$$
$$AD =Â \frac{5\sqrt13}{3}$$
Create a FREE account and get: