If $$16a^4 + 36a^2b^2 + 81b^4 = 91$$ and $$4a^2 + 9b^2 - 6ab = 13$$, then what is the value of $$3ab$$?
$$4a^2 + 9b^2 - 6ab = 13$$
$$(4a^2 + 9b^2 - 6ab)^2 = (13)^2$$
$$(\because(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac))$$
$$(4a^2)^2 + (9b^2)^2 + (6ab)^2 +2(4a^2.9b^2 -Â 9b^2.6ab -Â 6ab.4a^2) = 169$$
$$16a^4 + 36a^2b^2 + 81b^4 + 2(36a^2b^2 - 54ab^3 - 24a^3b) = 169$$
$$91 + 2(36a^2b^2 - 54ab^3 - 24a^3b) = 169$$
$$36a^2b^2 - 54ab^3 - 24a^3b = \frac{169 - 91}{2}$$
$$36a^2b^2 - 54ab^3 - 24a^3b = 39$$
$$6ab(6ab - 9b^2 - 4a^2) = 39$$
$$6ab(-13) = 39$$
6ab = -3
3ab = -3/2
Create a FREE account and get: