PQ = PR, => $$\triangle$$ PQR is an isosceles triangle with $$\angle$$ Q = $$\angle$$ R
Let $$\angle$$ P = $$\theta$$
=> $$\angle$$ Q = $$\angle$$ R = $$2\theta$$
In $$\triangle$$ PQR,
=> $$\angle$$ P + $$\angle$$ Q + $$\angle$$ R = $$180^\circ$$
=> $$\theta+2\theta+2\theta=180^\circ$$
=> $$5\theta=180^\circ$$
=> $$\theta=\frac{180}{5}=36^\circ$$
$$\therefore$$ $$\angle$$ Q = $$2 \times 36=72^\circ$$
=> Ans - (A)
Create a FREE account and get: