Question 67

If $$\tan 4A = \cot (A - 20^\circ), 0^\circ < 4A < 90^\circ$$ , then the value of A is:

Solution

Given, $$\tan 4A = \cot (A - 20^\circ)$$, $$0^\circ < 4A < 90^\circ$$

$$=$$>  $$\cot\left(90^{\circ}-4A\right)=\cot(A-20^{\circ})$$

$$=$$>  $$90^{\circ}-4A=A-20^{\circ}$$

$$=$$>  $$A+4A=90^{\circ}+20^{\circ\ }$$

$$=$$>  $$5A=110^{\circ\ }$$

$$=$$>  $$A=22^{\circ\ }$$

Hence, the correct answer is Option B


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App