Question 67

If $$(\cos^{2} \theta - 1)(1 + \tan^{2} \theta) + 2 \tan^2 \theta = 1, 0^\circ < \theta < 90^\circ$$ then $$\theta$$ is:

Solution

$$(\cos^{2} \theta - 1)(1 + \tan^{2} \theta) + 2 \tan^2 \theta = 1$$
 $$(-\sin^{2} \theta )(sec^2 \theta) + 2 \tan^2 \theta = 1$$

$$\frac{-\sin^{2} \theta}{cos^2 \theta} + 2 \tan^2 \theta = 1$$

$$-\tan^2 \theta + 2 \tan^2 \theta = 1$$

$$\tan^2 \theta = 1$$

For 0^\circ < \theta < 90^\circ$$,

$$\theta = 45\degree$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App