In the given figure, if AB = 8 cm, AC = 10 cm, $$\angle$$ABD = 90$$^\circ$$ and AD = 17 cm, then the measure of CD is:
From $$\triangle$$ABC,
AB$$^2$$ + BC$$^2$$ = AC$$^2$$
$$\Rightarrow$$Â 8$$^2$$ + BC$$^2$$ = 10$$^2$$
$$\Rightarrow$$Â 64 + BC$$^2$$ = 100
$$\Rightarrow$$Â BC$$^2$$ = 36
$$\Rightarrow$$Â BC = 6 cm
From $$\triangle$$ABD,
$$\Rightarrow$$Â AB$$^2$$ + BD$$^2$$ = AD$$^2$$
$$\Rightarrow$$Â 8$$^2$$ + BD$$^2$$ = 17$$^2$$
$$\Rightarrow$$Â 64 + BD$$^2$$ = 289
$$\Rightarrow$$Â BD$$^2$$ = 225
$$\Rightarrow$$Â BD = 15 cm
$$\Rightarrow$$Â BC + CD = 15
$$\Rightarrow$$Â 6 + CD = 15
$$\Rightarrow$$Â CD = 9 cm
Hence, the correct answer is Option B
Create a FREE account and get: