A hollow spherical shell is made of a metal of density 2.5 g/$$cm^{3}$$. If the external and the internal radii of the given sphere are 35 cm and 14 cm, respectively, find the mass of the shell.[Use $$\pi = \frac{22}{7}$$]
If the external and the internal radii of the given sphere are 35 cm and 14 cm, respectively
the volume of the spherical shell = $$\frac{4}{3}\times\ \pi\ \times\ \left[\left(external\ radii\right)^3-\left(internal\ radii\right)^3\right]$$
=Â $$\frac{4}{3}\times\ \frac{22}{7}\ \times\ \left[\left(35\right)^3-\left(14\right)^3\right]$$
=Â $$\frac{88}{21}\ \times\ \left[42875-2744\right]$$
=Â $$\frac{88}{21}\ \times40131$$
= $$88\times1911$$
=Â 168168Â $$cm^3$$
As we know that the mass of a shell = density $$\times$$ volume
=Â $$2.5\times\ 168168$$
=Â 420420 g
Create a FREE account and get: