If $$a + b + c = 5 and ab + bc + ca = 4, then a^3 + b^3 + c^3 - 3abc$$ is equal to:
a + b + c = 5Â Â Eq.(i)
ab + bc + ca = 4Â Â Â Eq.(ii)
We know that $$(a+b+c)^2\ =\ a^2+b^2+c^2+2\left(ab+bc+ca\right)$$
Put Eq.(i) and Eq.(ii) in the above equation.
$$5^2\ =\ a^2+b^2+c^2+2\times\ 4$$
$$25 =\ a^2+b^2+c^2+8$$
$$25-8 =\ a^2+b^2+c^2$$
$$a^2+b^2+c^2 = 17$$Â Â Â Eq.(iii)
We know that $$a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)$$
Now put Eq.(i), Eq.(ii) and Eq.(iii) in the above equation.
$$a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)$$
$$a^3+b^3+c^3-3abc=5(17-4)$$
$$a^3+b^3+c^3-3abc= 5\times13 = 65$$
Create a FREE account and get: