Question 66

If $$3 \sin \theta = 2 \cos \theta,  then  \frac{4 \sin \theta - \cos \theta}{4 \cos \theta + \sin \theta}$$ is equal to:

Solution

$$3 \sin \theta = 2 \cos \theta$$

$$\frac{\sin \theta}{\cos \theta} =\frac{2}{3}$$

$$ \frac{4 \sin \theta - \cos \theta}{4 \cos \theta + \sin \theta}$$

Divide both numerator and denominator by $$\cos\theta$$ ,

$$\frac{4\tan \theta -1 }{4 + \tan \theta}$$

= $$\frac{5}{14}$$

So , the answer would be option c)$$\frac{5}{14}$$.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App