If $$3 \sin \theta = 2 \cos \theta, then \frac{4 \sin \theta - \cos \theta}{4 \cos \theta + \sin \theta}$$ is equal to:
$$3 \sin \theta = 2 \cos \theta$$
$$\frac{\sin \theta}{\cos \theta} =\frac{2}{3}$$
$$ \frac{4 \sin \theta - \cos \theta}{4 \cos \theta + \sin \theta}$$
Divide both numerator and denominator by $$\cos\theta$$ ,
$$\frac{4\tan \theta -1Â }{4 +Â \tan \theta}$$
= $$\frac{5}{14}$$
So , the answer would be option c)$$\frac{5}{14}$$.
Create a FREE account and get: