Question 67

If $$\sqrt{x} - \frac{1}{\sqrt{x}} = \sqrt{5}$$,  then  $$x^2 + \frac{1}{x^2}$$ is equal to:

Solution

$$\sqrt{x} - \frac{1}{\sqrt{x}} = \sqrt{5}$$

Squaring both the sides , we get,

x + $$\frac{1}{x} - 2 = 5$$

x +  $$\frac{1}{x} = 7$$

Squaring again ,

$$x^2 + \frac{1}{x^2} + 2 =49$$

$$x^2 + \frac{1}{x^2}$$ = 47

So , the answer would be option c)47.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App