The area of a field in the shape of a triangle with each side x metres is equal to the area of another triangular field having sides 50 m, 70 m and 80 m. The value of x isĀ closest to:
Sides of second triangular field areĀ 50 m, 70 m and 80 m
Half perimeter of secondĀ triangular field(s) =Ā $$\frac{50+70+80}{2}$$ =Ā $$\frac{200}{2}$$ = 100 m
Area of second triangular field = $$\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}$$
$$=\sqrt{100\left(100-50\right)\left(100-70\right)\left(100-80\right)}$$
$$=\sqrt{100\left(50\right)\left(30\right)\left(20\right)}$$
$$=1000\sqrt{3}$$ m$$^2$$
Given, area of both the triangular fields are equal
$$\therefore\ $$Area of firstĀ triangular field =Ā $$1000\sqrt{3}$$ m$$^2$$
$$\Rightarrow$$ Ā $$\frac{\sqrt{3}}{4}$$x$$^2$$ =Ā $$1000\sqrt{3}$$
$$\Rightarrow$$ Ā x$$^2$$ = 4000
$$\Rightarrow$$Ā x = $$\sqrt{4000}$$
$$\Rightarrow$$Ā x = 63.2 m
Hence, the correct answer is Option B
Create a FREE account and get: