If $$x=\sqrt{a}+\frac{1}{\sqrt{a}},y=\sqrt{a}-\frac{1}{\sqrt{a}}, (a>o)$$ the the value of $$x^{4}+y^4-2x^2y^2$$ isÂ
Given : $$x=\sqrt{a}+\frac{1}{\sqrt{a}}$$
Squaring both sides
=>Â $$(x)^2=(\sqrt{a}+\frac{1}{\sqrt{a}})^2$$
=> $$x^2=(\sqrt{a})^2+(\frac{1}{\sqrt{a}})^2+2.\sqrt{a}.\frac{1}{\sqrt{a}}$$
=> $$x^2=a+\frac{1}{a}+2$$ -------------(i)
Similarly, $$y^2=a+\frac{1}{a}-2$$ ---------(ii)
To find : $$x^{4}+y^4-2x^2y^2$$
= $$(x^2-y^2)^2$$
Substituting values from equations (i) and (ii), we get :
= $$[(a+\frac{1}{a}+2)-(a+\frac{1}{a}-2)]^2$$
= $$(2+2)^2=(4)^2=16$$
=> Ans - (A)
Create a FREE account and get: