Given, Â $$2 \sin^2 x = 2 - 3 \sin x$$
$$=$$>Â $$2\sin^2x+3\sin x-2=0$$
$$=$$> Â $$2\sin^2x-\sin x+4\sin x-2=0$$
$$=$$> Â $$\sin x\left(2\sin x-1\right)+2\left(2\sin x-1\right)=0$$
$$=$$> Â $$\left(2\sin x-1\right)\left(\sin x+2\right)=0$$
$$=$$>  $$2\sin x-1=0$$ or  $$\sin x+2=0$$
$$=$$>  $$\sin x=\frac{1}{2}$$ or  $$\sin x=-2$$
$$\sin x=-2$$ is not possible
$$=$$> Â $$\sin x=\frac{1}{2}$$
$$=$$> Â $$\sin x=\sin\frac{\pi\ }{6}$$
$$=$$> Â $$x=\frac{\pi\ }{6}$$
Hence, the correct answer is Option A
Create a FREE account and get: