Sign in
Please select an account to continue using cracku.in
↓ →
The value of $$x$$, if $$2 \sin^2 x = 2 - 3 \sin x$$, is:
Given, $$2 \sin^2 x = 2 - 3 \sin x$$
$$=$$> $$2\sin^2x+3\sin x-2=0$$
$$=$$> $$2\sin^2x-\sin x+4\sin x-2=0$$
$$=$$> $$\sin x\left(2\sin x-1\right)+2\left(2\sin x-1\right)=0$$
$$=$$> $$\left(2\sin x-1\right)\left(\sin x+2\right)=0$$
$$=$$> $$2\sin x-1=0$$ or $$\sin x+2=0$$
$$=$$> $$\sin x=\frac{1}{2}$$ or $$\sin x=-2$$
$$\sin x=-2$$ is not possible
$$=$$> $$\sin x=\frac{1}{2}$$
$$=$$> $$\sin x=\sin\frac{\pi\ }{6}$$
$$=$$> $$x=\frac{\pi\ }{6}$$
Hence, the correct answer is Option A
Create a FREE account and get: