$$(\sin \theta + \cos \theta)^2 = 2, 0^\circ < \theta < 90^\circ$$ then the value of $$\theta$$ is:
Given,  $$0^\circ < \theta < 90^\circ$$
$$=$$> Â $$0^{\circ}<2\theta<180^{\circ}$$
$$(\sin \theta + \cos \theta)^2 = 2$$
$$=$$> Â $$\sin^2\theta\ +\cos^2\theta\ +2\sin\theta\ \cos\theta\ =2$$
$$=$$> Â $$1+2\sin\theta\ \cos\theta\ =2$$
$$=$$> Â $$2\sin\theta\ \cos\theta\ =2-1$$
$$=$$> Â $$\sin2\theta\ =1$$
$$=$$>  $$\sin2\theta\ =\sin\left(\frac{\pi\ }{2}\right)$$ since $$0^{\circ}<2\theta<180^{\circ}$$
$$=$$> Â $$2\theta\ =\frac{\pi\ }{2}$$
$$=$$> Â $$\theta\ =\frac{\pi\ }{4}$$
Hence, the correct answer is Option C
Create a FREE account and get: