In the given figure, MP is tangent to a circle with center A and NQ is a tangent to a circle with center B. If MP = 15 cm, NQ = 8 cm, PA = 17 cm and BQ = 10 cm, then AB is:
MP is tangent to the circle with center A. So MP is perpendicular to AM.
From $$\triangle\ $$PAM,
AM$$^2$$ + MP$$^2$$ = PA$$^2$$
$$\Rightarrow$$Â AM$$^2$$ + 15$$^2$$ = 17$$^2$$
$$\Rightarrow$$Â AM$$^2$$ + 225 = 289
$$\Rightarrow$$Â AM$$^2$$ = 64
$$\Rightarrow$$Â AM = 8 cm
Radius of larger circle = AC = AM = 8 cm
NQ is tangent to the circle with center B. So NQ is perpendicular to BN.
From $$\triangle\ $$QBN,
BN$$^2$$ + NQ$$^2$$ = BQ$$^2$$
$$\Rightarrow$$Â BN$$^2$$ + 8$$^2$$ = 10$$^2$$
$$\Rightarrow$$ Â BN$$^2$$ + 64 = 100
$$\Rightarrow$$Â BN$$^2$$ = 36
$$\Rightarrow$$Â BN = 6 cm
Radius of smaller circle = BC = BN = 6 cm
$$\therefore\ $$AB = AC + BC = 8 + 6 = 14 cm
Hence, the correct answer is Option BCreate a FREE account and get: