If $$4(\cosec^2 65^\circ - \tan^2 25^\circ) - \sin 90^\circ - \tan^2 63^\circ y \tan^2 27^\circ = \frac{y}{2}$$, then the value of $$y$$ is:
$$4(\cosec^2 65^\circ - \tan^2 25^\circ) - \sin 90^\circ - \tan^2 63^\circ y \tan^2 27^\circ = \frac{y}{2}$$
$$=$$> $$4(\operatorname{cosec}^265^{\circ}-\tan^2\left(90-65\right)^{\circ})-\left(1\right)-\tan^263^{\circ}y\tan^2\left(90-63\right)^{\circ}=\frac{y}{2}$$
$$=$$> $$4(\operatorname{cosec}^265^{\circ}-\cot^265)^{\circ\ }-1- \tan^263^{\circ}y\cot^263^{\circ}=\frac{y}{2}$$
$$=$$> $$4\left(1\right)-1-y=\frac{y}{2}$$
$$=$$> $$\frac{y}{2}+y=3$$
$$=$$> $$\frac{3y}{2}=3$$
$$=$$> $$y=2$$
Hence, the correct answer is Option A
Create a FREE account and get: