As we know the identity
$$\therefore (a - b)^3 = a^3 - b^3 - 3ab(a - b)$$
Given, $$x - \frac{1}{x} = 7$$
$$\Rightarrow (x - \frac{1}{x})^3 = 7^3$$
$$\Rightarrow x^3 - (\frac{1}{x})^3 - 3 (x)(\frac{1}{x})(x - \frac{1}{x}) = 343$$
$$\Rightarrow x^3 -\frac{1}{x^3} - 3(x - \frac{1}{x}) = 343 $$
$$\Rightarrow x^3 -\frac{1}{x^3} = 343 + 3(x - \frac{1}{x})$$
$$\Rightarrow x^3 -\frac{1}{x^3} = 343 + 3 \times 7 $$
$$\Rightarrow x^3 -\frac{1}{x^3} = 343 + 21 = 364 $$
Create a FREE account and get: