Expression 1 : $$x=acos\theta+bsin\theta$$
Squaring both sides
=> $$x^2=a^2cos^2\theta+b^2sin^2\theta+2ab(sin\theta)(cos\theta)$$ ------------(i)
Expression 2 : $$y=bcos\theta-asin\theta$$
Squaring both sides,
=> $$y^2=b^2cos^2\theta+a^2sin^2\theta-2ab(sin\theta)(cos\theta)$$ ------------(ii)
Adding equations (i) and (ii), we get :
=> $$x^2+y^2=[a^2cos^2\theta+b^2cos^2\theta+2absin\theta cos\theta]+[a^2sin^2\theta+b^2sin^2\theta-2absin\theta cos\theta]$$
= $$cos^2\theta(a^2+b^2)+sin^2\theta(a^2+b^2)$$
= $$(a^2+b^2)(cos^2\theta+sin^2\theta)$$
= $$a^2+b^2$$
=> Ans - (B)
Create a FREE account and get: