Given, $$x$$ = 255, $$y$$ = 256, $$z$$ = 257
$$x^3+y^3+z^3—3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)$$
$$=\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2yz-2zx\right)$$
$$=\frac{\left(x+y+z\right)}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]$$
$$=\frac{\left(255+256+257\right)}{2}\left[\left(255-256\right)^2+\left(256-257\right)^2+\left(257-255\right)^2\right]$$
$$=\frac{768}{2}\left[1+1+4\right]$$
$$=\frac{768}{2}\left[6\right]$$
$$=2304$$
Hence, the correct answer is Option D
Create a FREE account and get: