Question 63

If $$5^{\sqrt[3]{x}} + 12^{\sqrt[3]{x}} = 13^{\sqrt[3]{x}}$$, then the value of $$x$$ is:

Solution

The numbers 5, 12 and 13 form a pythagorean triplet as   $$5^2 + 12^2 = 13^2 $$

So comparing $$5^{\sqrt[3]{x}} + 12^{\sqrt[3]{x}} = 13^{\sqrt[3]{x}}$$ with above written pythagorean formula

We get,  $$ \sqrt[3]{x} = 2$$

$$\therefore x=2^3 = 8$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App