In an isosceles triangle ABC with AB = AC and AD is perpendicular to BC, if AD = 6 cm and the perimeter of $$\triangle$$ABC is 36 cm, then the area of $$\triangle$$ABC is:
Given, AB = AC
Let AB = AC = p
Perimeter of $$\triangle$$ABC = 36 cm
$$\Rightarrow$$Â AB + AC + BC = 36
$$\Rightarrow$$Â p + p + BC = 36
$$\Rightarrow$$Â BC = 36 - 2p
Since AB = AC and AD is perpendicular to BC
AD will be the perpendicular bisector which bisects BC
$$\Rightarrow$$Â BD = CD = $$\frac{36-2p}{2}$$ = 18 - p
In $$\triangle$$ADB,
AB$$^2$$ = BD$$^2$$ + AD$$^2$$
$$\Rightarrow$$Â p$$^2$$ = (18 - p)$$^2$$ + 6$$^2$$
$$\Rightarrow$$ Â p$$^2$$ = 324 +Â p$$^2$$ - 36p + 36
$$\Rightarrow$$Â 36p = 360
$$\Rightarrow$$Â p = 10
BC = 36 - 2p = 36 - 20 = 16
$$\therefore\ $$Area of the triangle =Â $$\frac{1}{2}$$ x AD x BC =Â $$\frac{1}{2}$$ x 6 x 16 =Â 48 $$cm^2$$
Hence, the correct answer is Option D
Create a FREE account and get: